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ABSTRACT 

An automorphism of the n-dimensional torus T n, none of whose eigenvalues 
is a root of unity includes on the canonical measure space of T n a measure 
preserving transformation which is isomorphic to a Bernoulli shift. 

The purpose of this paper is to prove its title. A measure preserving trans- 

formation S on a measure space (X,~,p)  is a Bernoulli shift if there exists 

a finite measurable parti t ion ~ = {P1, '" ,Pk} on X such that the partitions 

{SJ~}~=-o~ are independent and their join span ~;  such a parti t ion is sometimes 

called a Bernoulli generator. Donald Ornstein proved [21 that the existence of  

partitions satisfying weaker conditions than independence of  {SJ~}, (such as 

"weak Bernoull i"  (W.B.) or "very weak Bernoull i"  (V.W.B.)), is sufficient to 

insure the existence of  a Bernoulli generator for the a-field they span under S.  

It  also follows from Ornstein's work [3] that if {~}~o= 1 is a sequence of parti- 

tions such that ~k+l  is a refinement of  ~k and k/ ~k spans f~ under S,  and if 

each ~k is V.W.B., then S is a Bernoulli shift on (X, f~, p). We show that in the 

case of  an ergodic (algebraic) automorphism S of a finite dimensional torus T", 

every "n ice"  (see definition 3 below) partition of T" satisfies a condition (almost 

weak Bernoulli, see definition 2 below) which seems weaker than "weak Ber- 

noul l i"  but is clearly stronger than "very weak Bernoulli" which, by the pre- 

ceding remarks, is sufficient to imply that S is a Bernoulli shift on T" . 

In §2 we extend the results to cover the case of  S being an epimorphism, i.e. 

a homomorphism of T" onto itself (not necessarily one-to-one) and obtain that 

the "natural  extension" (see [5]) of  (T",S) is a Bernoulli shift. 

* This research was supported in part by the National Science Foundation grant GP-18884 
and by the European Research Office of the U.S. Army contract DAJA-37-70-C-0701. 

Received February 17, 1971 

186 



Vol. 10, 1971 ERGODIC AUTOMORPHISMS OF T n 187 

Partial results towards proving that ergodic automorphisms (and epimorphisms) 

of the torus, and more generally of a compact abelian group, are Bernoulli shifts 

were obtained in [1], [4], [6]. Although we do not settle here the general case 

of a compact abelian group, it seems likely that the methods presented here 

could be pushed to give that general case. 

In §3 we prove a simple arithmetic lemma which is needed in the first sections; 

it is included for the sake of (relative) completeness. 

I owe most of my education in the subject to D. Ornstein and R. Adler who 

deserve much of the credit for the results presented here. 

1. Let (X, fl,/~) be a (probability) measure space. All the partitions discussed 

below are assumed to be fl measurable. 

DEFINITION 1. Two finite partitions d and N of (X, fl, p) are z-independent, 

~ > 0 ,  if 

X B )  - < 5.  
,~v,@ 

We shall use the following criterion to check e-independence. 

LEMMA 1. Let d and ~ be finite partitions of (X, fl, p). Let e > 0 and 

E c X such that p ( E ) c  82. Assume that to each A E d corresponds a non- 

negative measurable function ~?a on X ,  and to each B 6 ~  a function ~'B such 

that 

(1) ~)A(t) > 1 on A \ E, ~'B(t) > 1 on B \ E 

(2) aX f4,.d#<l+e', .~.x; fO.d#<l+e 2 

(3) f +wO.d,, = f +ada f O.d,. 

Then d and N are 11 e-independent. 

PROOF. Denote 

d t =  { A ; A e d ,  f dpad# < (1 + e)p.(A)} 

then 
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hence, by (2) 

Z f ~ b a d # = > ( l + e )  Z #(A) 

z Z i.t(A\E)> Z #(A)-e 
A ~ ali A ~:,~t A ~ dl 

1 + ~2 ~. 1 + e E /~(A) - e 
A ~.~tt 

o r  

(4) 2~ #(A) < 2~. 
ACaIl 

Write 
/ ,  

"-q/o = ( A ; A e d ,  J ~bad # > (1 - s)/~(A)} 

and notice that if A ~ d o,/~(A n E) >__ ~/~(A) so that  ~z >/~(E) > • a ¢ ~¢o~( A c~ E) 

_-> e Z a ¢ d o P ( A )  or 

(5) Z /I(A) =< e. 
A¢.do 

For  A E ~  = d o c ~ d  1 we have 

(6) (1 - e)~(A) -< f ~bad# =< (1 + ~)#(A) 

and by (4) and (5) 

(7) ]~~ /a(A) __< 3e. 

Similarly, defining 

we obtain 

(8) 

= {B; B e ~ ,  (1 - e)#(B) =< ftpBd # <= (1 + e)/~(B)} 

•~ #(B) < 3e. 
B¢9~ 

Finally, noticing that  by (1), (2) and (3) 

(1') @A~P~ ->- 1 on (An B)\E 

(2 t) ~a f ~)A~-IB < (1 "~ ~2)2 < 1 -]- 3~ 2 

and writing 
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= {A r iB ;  A n B e d V ~ $ ,  (1 -e )p (A r iB)  <__ 

we obtain as above 

(9) 

E R G O D I C  A U T O M O R P H I S M S  O F  T n 

f ~)AtPBdp < (1 

Z _ p(A n B) < 5e 
A u B ¢  .~ 
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+ e)#(A riB)} 

B E ~ ,  A n B e  ~ then 

p(A c~B) < (1 - e)- 1 

and 

__> (1 + e)-~(1-e)2/~(A)p(B). 

Let S be a measure preserving transformation on (X,~ ,p) .  

f 4,AV,.d  =(1-e)-If ad fV'.dP<= 
_<_ (1 - e)- 1(1 + e)2#(A)p(B) 

DEFINITION 2. A (finite) parti t ion N of X is almost weak Bernoulli (A.W.B.) 

for S if for all e > 0 there exists an integer Ko = Ko(e) such that for all K > Ko 

and for all integers N > K ,  the partitions 

- K  K 2 

V S- j ~  and V S - i ~  
--N K 

are e-independent. 

It  is clear that if ~ is A.W.B. then it is "very weak Bernoulli" (see [2] p. 182 

for the definition of V.W.B.). 

We consider now the case X = T ;  the n-dimensional torus, with the Lebesgue 

(Haar) a-field and measure. 

DEFINITION 3. A finite partit ion ~ = {P I , " ' ,  Pr} of T" is " 'nice" if there exists 

a constant l > 0 such that for every positive integer m there exists a set E m on 

T", p(Em) < m- 2, and, for every P E ~ there exists a non-negative trigonometric 

polynomial f = fm.e of degree (in each variable)less that m ~ , such that 

sup El,~fml , ( t )  =< 1 + m -2, and 

f,,.p(t) >__ 1 on P \ E  m, fmp(t) < m -2 on T " \ ( P  U Era). 

and the lemma follows from (7), (8), (9) and the observation that if A e d ,  
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REMARK. If each P ~ ~ is a box, i.e. a product of  intervals, then ~ is "n ice" .  

In fact, we can take fm,P to be the Fej6r sum of  order m ~° (i.e. I = 10) of the 

characteristic function of  P ,  multiplied by 1 + m-2.  

The main result of this paper is 

THEOREM 1. Let S be an ergodic automorphism of T ~, then every "nice" 

partition of T ~ is A.W.B. for S. 

COROLLARY S is a Bernoulli shift on T n. 

PROOF OF THEOREM 1. A typical atom in d = ~/~2S-Z~ has the form 
K 2 K 2 - r a  

A = f'~m=rS-mpj,, (Jm = 1 , " - , r ) .  We put CA = 1-Im=rS f,,,ej~, (where 

(S-mF)(t) = F(Smt)) and claim that Ca(t) > 0 on T n, and 

K 2 

(11) q$A(t) > 1 on A \ LJs- 'Em,  
K 

A ¢ ,~ '  , A 

Similarly, consider 
VI N Star 

~IB ~--- I I m = K  J m , P j m  

(12) 

K 2 

I-I (1 + m-2) .  
r2 ) 

P K 

~ =  v ~ s m ~  and for B =  A~=Ks'npj e ~  write 

and notice OB(t} > 0 and 

N 

0B(t) > 1 on B \ LJ smj~m 
K 

~'~ ~/Bd~ : f ~K Sin fm,P <-~ H (  1 "t- FH-2)" 
P~d p ~ K 

Thus, given e > 0 we can choose K ;  large enough to imply conditions (1) and 

(2) of Lemma 1 for all K > Ko.  We shall now show that there exists a con- 

stant K~ such that K > K~' implies (3). Writing K o = max(K~, K~) Theorem 1 

will then follow from Lemma 1. 

We have not  used so far the fact that S was an ergodic automorphism of T n . 

This assumption is equivalent to saying that S maps exponentials to exponentials, 

the orbit of every non-trivial exponential being infinite. More specifically, S is 

given by an n x n matrix (which we again debote by S) with integral entries 

and determinant + 1, and we have 

S e i ( , ~ ' t )  = ei(;~'s t)  = e i (5  2" t )  , ~ E Z  n.  

I f  S had an eigenvalue which is a root  of unity say, of order k, then I - S k 

would be singular and with integral coefficients and hence for some 2 ~ Z", 
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2 = sk2. Thus the assumption that S is ergodic implies that S has no eigenvalue 

which is a root of unity. We may clearly consider the matrix S as operating on 

R n and we claim that if V c R" is an S-invariant subspace and the eigenvalues 

of S Iv are all of modulus < 1, then V r~ zn = 0. This follows from the fact 

that if all the eigenvalues of a non-singular matrix with integral entries (here 

S lwz , )  have modulus < 1 then they are all roots of unity (and the fact that 

each eigenvalue of S[wz- is also an eigenvalue for S I v and S). 

We now write R " =  V • Vx where V and 1/1 are the S-invariant subspaces 

of R" corresponding to the eigenvalues of S of modulus < 1 and > 1 respectively. 

Using, e.g., the Euclidean norm we obtain that for an appropriate constant C 

if x ~ R", x = v(x) + vi(x) v(x) E V and vi(x ) E 171, then 

[]v(x)][<C[lx[[ and l[vl(x)[[--<C[lxH. (13) 

We clearly have 

(14) Hs lvlI Cm". 

Also, for some p > 1 and m >  mo 

(15) l[ s-m[ V1 i] < p - ~  

and in particular if vl s 111, m > m o then 

(16) [] S'%1 l[ _-> pm ]lVl ][. 

Finally, by Lemma 3, which we prove in §3, we have some Ct > 0 such that 

(17) I1 ,( )11 >-- c ,  ll ll -° 

for all 2 sZ" .  Going back to the functions 4) A and ~B introduced above we notice 

first they all are trigonometric polynomials. We shall show now that the only 

frequency which is common to some q5 A and some I//~ is 2 = 0, which, by Par- 

seval's formula, implies (3). 

Let b 6 Z "  be a frequency which appears in ~B for some B 6 M .  Then 

b = ~,-ffS"b,,, where bm is a frequency in the corresponding fl,,l and hence 

[Ibmll ____nlm[* Now v l ( b ) =  ~ , : b i ( S % m ) : ~ - ~ S m ( v l ( b m ) ) a n d  assuming 

K > m o we have by (13) and (15) 

(18) llv1(b)ll = cn m'o 
m = K  

On the other hand let a # 0 be a frequen@ appearing in q5 a for some A e d .  

Then, as before, 
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K2 ) 
a = wit  II °-It n m '  

Israel J. Math., 

and by (13) and (14) 

K2 ) K2 
0 ~;~ lip ( K ~ sm-Kam II <= Cn r,,, (m-K)",, , '  <= Cng =°+='+= 

hence by (17) 

and by (16) 

K2 ) 
I1 v, ( ~r S"-Ka" II > C=K-="<"+'+" 

K 2 
 19, JIv, a 11 IIs v, ( S- a.)II c2 KK 
It is clear that for K > K0, (18) and (19) are inconsistent, and the proof is com- 

plete. 

2. The argument in the proof of Theorem 1 can be refined somewhat to enable 

us to deal with epimorphisms of T". If  S is a non-singular n x n matrix with 

integral entries, S defines an epimorphism of T" i.e., a (usually many to one) 

homomorhism of T" onto itself. S is then measure preserving in the sense that 

for all measurable E on T" we have/a(S- I(E)) --- f l (E) ,  (the pre-image of every 

point under S is a set of ]det S] points, and d#(St) = ]detSldp(t))  and it is 

known [-5] that under such conditions, (T ~, S) admits a "natural  extension" 

(analogous to the extension of the "one sided shift" to the " two sided shift"). 

Our Theorem 2 implies that this "natural  extension" of (T", S) is Bernoulli. 

THEOREM 2. Let S be an ergodic epimorphism of T", let ~ be a "nice" 

partition of T n and let e > O. Then there exists an integer Ko such that for every 

K > K 0  and arbitrary N > 0 ,  the partitions Vg2S-m~ and VK2+K\/KZ+K+N~-m~lh~, , . i  

are e-independent. 

PROOF. We follow the lines of the proof of Theorem 1; the only additional 

information that we need is the following: 

LEMMA 2. Let S be as above. Let l be an integer. There exists a constant 
Ko such that if  K > K o, N arbitrary, and fm are trigonometric polynomials 
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on T" of  degree (in each variable) bounded by K 2t for  m < K 2 and by m ~ for  
- m  " [ - [ K 2 + K + N  - m  m ~ K 2, then the only f requency common to l--[K2 S 'f,, and 1 Ig 2+K S ~fm, 

is zero (where ( S - S f ) ( t )  = f ( smt ) ) .  

PROOF. S (more precisely its adjoint) is a 1-1 endomorphism of Z" which 

can be extended as before to an automorphism of R n. We decompose 

R ~ = V_~ @ Vo @ 1/1 @ ... @V, such that Vj, j = - 1 ,  O, ..., r are S invariant, 

all the eigenvalues of Sir_ ~ have modulus less than one, all the eigenvalues of 

SIr  o have modulus one, and for j = 1 , . . . , r ,  all the eigenvalues of Sly j have 

the same modulus pj ,  where Po = 1 < p~ < ... < p,.  We denote by p_~ the 

maximum modulus of the eigenvalues of S[v_,.  This decomposition is given 

by the "Jordan canonical f o rm"  theorem, which also shows that if v ~ V~ and 

m > 0 is an integer, then 

(20) const <= I1s%11--< const m>711vll. 
For any 2 e Z n we write 2 = EL ~ v j(2) where v j(2)e Vj. We also notice that 

the assumption of ergodicity implies (V_, @ Vo) m Z" = 0. 

Let 2 be a frequency which appears (with non-zero coefficient) in I-I~ ~ s-mf , , .  
K 2 Then 2 = ~ m = 1 Sin2,, where 

(21) 

for all m. We clearly have 

]! 2,. H =< const K2' 

K 2 

(22) v j(2) = Z S'(vi(2m)) 
m = l  

which, by (20) and (21) implies for j > 0 

K 2 

(23) IPv,(2)iJ =< const m > r K  =' <= constg2"+='+2py = 
m = l  

while 
It v_,(2)H < cons tK 2"+2'+2. 

(24) 

On the other hand, if 2' is a frequency which appears in 

then 2' = S K2+r*" where 2" ]~ N ,, ,, = m=oS 2=+r2+r. We have 

N 

(25) II v_1(2")II < const ~ m"p~_~(m + K 2 + K) '  < constK 2' 
m = 0  

and if 2' is also a frequency of ]--[f~ Smf= then by (23) and (20) 

(26) ]I vj(2")H < c°nstKZ"P;~=-rK2"+zt+ZPff = = c ° n s t K " P ;  ~v" 

~[K 2 + K + N  ¢ , - m g  
K 2 + K  ~.3 J m  
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It follows that ]lv_1(2")+vo(2")][ is bounded by a power of K while 

]l E~vj(2")][ decreases exponentially with K; by Lemma 3 this implies 2 " =  0 

hence 2' = 0. This completes the proof of Lemma 2 and of Theorem 2. 

3. 

D~FINmoN. A subspace V of R" is an eigenspace of an n × n matrix S if 

R" = V @ V' with V and V1 both invariant under S and S Iv, S Iv1 have no com- 
mon eigenvalue. 

It is clear that if V is an eigenspace of S with V1 as above and if ~ is the minimal 

polynomial of S Iv, then ~(S) is invertible on V1. 

LEMMA 3. Let S be an n × n matrix with integral coefficients and let V 

be an m-dimensional eigenspace of S.  Assume V c~ Z" = O. Then there exists 

a constant C such that for every 2~Z" ,  d(2, V) _-> c l l2 l ] - " ,  where d(A,V) is 

the (Euclidean) distance of 2 to V. 

PROOF. Let ~(x) = xk + a~-lx k-1 + "" + ao (k <= m) be the minimal poly- 

nomial of S Iv; notice that the coefficients a i are real numbers. There exists some 

~/>0 such that if F ( x ) = x k + b k - l x k - l + ' " + b o  with [ b j - a j [ < ~ /  

j = 0... k - 1  then the null space of F(S) is contained in V. This follows from 

the fact that, if 1/is small, ~(S)F(S) is very close to (~(S)) 2 which is invertible 

on 111, and its nullity is therefore bounded by m and hence its null space, which 

clearly contains that of F(S), is exactly V. Thus, if q is sufficiently small, 

F ( S ) 2 ~ 0  for 2~Z", 2 ~ 0 .  

By Dirichlet's theorem, for every positive integer Q, there exist integers 

q, ro,"' ,rk-1, q < Qk, such that ] a j -  rj/q] <= 1]qQ fo r j  = 0 , . . . , k - 1 .  Denote 

~ a ( x ) = x k +  ~ k - l q - l r i x ~  , then  for Q > Q o  ~ a ( S ) 2 ~  0 for 2~Z",  2 ~ 0 ,  

and, since q~Q(S) has integral coefficients, I]  (s)211 > 1/q for any such 4. 

For 2 ~ 0, 2 E Z" let v be its projection on V and write 

~ ( s ) 2  = ~ d s )  ( ~ -  v) + (~Q(s) - ~(s))v 

hence, if C > (  I ajl + k)ll Sll 

q 

and choosing Q = 2C [[ 21[ we get 

1 
d(2, v) > - -  

2Cq 
and the proof is complete. 

1 
c, Ilxll 
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