ERGODIC AUTOMORPHISMS OF 7" ARE
BERNOULLI SHIFTS

BY
YITZHAK KATZNELSON*

ABSTRACT

An antomorphism of the n-dimensional torus 7%, none of whose eigenvalues
is a root of unity includes on the canonical measure space of 7" a measure
preserving transformation which is isomorphic to a Bernoulli shift.

The purpose of this paper is to prove its title. A measure preserving trans-
formation S on a measure space (X,Q,p) is a Bernoulli shift if there exists
a finite measurable partition # = {P,,--,P,} on X such that the partitions
{S’?]’}f: -« are independent and their join span Q; such a partition is sometimes
called a Bernoulli generator. Donald Ornstein proved [2]that the existence of
partitions satisfying weaker conditions than independence of {S'#}, (such as
““weak Bernoulli’’ (W.B.) or ‘‘very weak Bernoulli’’ (V.W.B.)), is sufficient to
insure the existence of a Bernoulli generator for the o-field they span under S.
It also follows from Ornstein’s work [3] that if {2, }7- is a sequence of parti-
tions such that 2, is a refinement of 2, and \/ &, spans Q under S, and if
each 2, is V.W.B,, then S is a Bernoulli shift on (X, Q, ). We show that in the
case of an ergodic (algebraic) automorphism S of a finite dimensional torus 7",
every ‘“‘nice” (see definition 3 below) partition of T™ satisfies a condition (almost
weak Bernoulli, see definition 2 below) which seems weaker than ‘‘weak Ber-
noulli” but is clearly stronger than ‘‘very weak Bernoulli®® which, by the pre-
ceding remarks, is sufficient to imply that S is a Bernoulli shift on 7™,

In §2 we extend the results to cover the case of S being an epimorphism, i.e.
a homomorphism of T" onto itself (not necessarily one-to-one) and obtain that
the “‘natural extension’ (see [5]) of (7™, S) is a Bernoulli shift.
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Partial results towards proving that ergodic automorphisms (and epimorphisms)
of the torus, and more generally of a compact abelian group, are Bernoulli shifts
were obtained in [1], [4], [6]. Although we do not settle here the general case
of a compact abelian group, it seems likely that the methods presented here
could be pushed to give that general case.

In §3 we prove a simple arithmetic lemma which is needed in the first sections;
it is included for the sake of (relative) completeness.

I owe most of my education in the subject to D. Orastein and R. Adler who
deserve much of the credit for the results presented here.

1. Let (X,Q, n) be a (probability) measure space. All the partitions discussed
below are assumed to be Q measurable.

DermNiTION 1. Two finite partitions &7 and # of (X,Q, ) are e-independent,
£>0, if

T |wd o B) — u(DuB)| <e.
AvRB

We shall use the following criterion to check z-independence.

LemMA 1. Let o/ and # be finite partitions of (X,Q,u). Let ¢>0 and
Ec X such that uy(E) < &*. Assume that to each Aesf corresponds a non-

negative measurable function ¢, on X, and to each Be # a function ¥z such
that

(D ¢ t) =1 0on ANE, Yu(t)=1o0n B\E

2 2 | ddu<ite®, T Ypdu <1+ &
Acod Be %

3) [ wbatu = [ . [ s

Then o and % are 11 s-independent.

ProoF. Denote

sty = {A;dest, f b < (1 + ()}

then
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X | dduz(+e) X A
A¢ oA

A¢ oy

X | pdpz X wANE)Z X pd)—e

Ae Ae oy Aest

hence, by (2)
1+ =21+ X u(d)—c¢

A¢ oy
or
4 T u(A) £ 2.
A¢ sty
Write

oty = {434e4, f G 2 (1 — Du(A))

and notice that if 4 ¢ ./, u(4 N E) = e u(4) sothat 2 2 W(E) 2 T 44 4 (A N E)
2 & X 44u,M(4) or

&) Y ) Le.

A¢ o

For Aesf = o/, N7/, we have

©) (1 — () < f badp < (1 + Ou(d)
and by (4) and (5)
Q) Y. wA) £ 3.

A¢ A

Similarly, defining

% = {B; Be#, (1 - Hu(B) < f Vsdp S (1+ u(B))

we obtain
(8) X. WB)<3s.
B¢®
Finally, noticing that by (1), (2) and (3)
(19 ¢ =1 on (ANB)\E
29 = f s <1+ <1+ 3¢

and writing
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§={40B;AnBeAd B, (1-uANB) S fc/u%du < (1+ DA B)}

we obtain as above

)] Y _wAnB)<5e

AuB¢ o

and the lemma follows from (7), (8), (9) and the observation that if Ae s,
BEQZN”, AN Be 9 then

WA OB) £ (-8 f babpdp = (1—8)* f badp f Updp <

< (1-97'(1 +&)*u(A)u(B)

and

WANB) 2 (1 -+ f babpdn = (1+8)" f b 4dp f Udp

(\%

(1 + &)~ (1=’ w(A)u(B). <
Let S be a measure preserving transformation on (X,Q,u).
DEFINITION 2. A (finite) partition 2 of X is almost weak Bernoulli (A.W.B.)

for S if for all ¢ > 0 there exists an integer K, = K(¢) such that for all K > K,
and for all integers N > K, the partitions

-K . K2 .
\/ S7# and \/ ST/
-N K

are e-independent.

It is clear that if 2 is A.W.B. then it is “‘very weak Bernoulli” (see [2] p. 182
for the definiticn of V.W.B.).

We consider now the case X = T, the n-dimensional torus, with the Lebesgue
(Haar) o-field and measure.

DEFINITION 3. A finite partition 2 = {Py,---, P,} of T"is “‘nice”” if there exists
a constant I > 0 such that for every positive integer m there exists a set E, on
T, w(E,) < m~% and, for every P € £ there exists a non-negative trigonometric
polynomial f = f, , of degree (in each variable) less that m', such that
SUPp X pegpfup(f) S 1+ m™? and

(D) Z 1 00 PNE,, fup)<m 2 on T"\(PUE,).
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ReMARK. If each Pe £ is a bog, i.e. a product of intervals, then £ is “‘nice’”.
In fact, we can take f,, p to be the Fejér sum of order m'® (i.e. I = 10) of the
characteristic function of P, multiplied by 1+ m™2.

The main result of this paper is

THEOREM 1. Let S be an ergodic automorphism of T", then every ‘‘nice”
partition of T" is AW.B. for S.

COROLLARY S is a Bernoulli shift on T".

PRrOOF OF THEOREM 1. A typical atom in &/ = \/E°S™™# has the form

A= ﬁixs_mpjm (Jp=1,,71). We put ¢, = rIvEZ=KS_mfm,ij9 (where
(ST"F)(t) = F(S™)) and claim that ¢ () = 0 on T, and
K2
(N d 21 on AN (JST"E,,
K
K2 K2
2 [oudn= [ = gudu= [ T57( T pus) s [[a+md.
Aesd Ae o K Pe 2 K

Similarly, consider % = \/{S"? and for B = (\n-xS"P; €% write
Yg = |Im=xS"fmp, and notice yy(t} = 0 and

V() =21 on B\ CJ S"™E,,
(12) K

2 [on [ E e [1]5 (2] 0en

Be®B

Thus, given & > 0 we can choose K large enough to imply conditions (1) and
(2) of Lemma 1 for all K > K;. We shall now show that there exists a con-
stant K§ such that K> K implies (3). Writing K, = max(Kg, Kg) Theorem 1
will then follow from Lemma 1.

We have not used so far the fact that S was an ergodic automorphism of T".
This assumption is equivalent to saying that S maps exponentials to exponentials,
the orbit of every non-trivial exponential being infinite. More specifically, S is
given by an n x n matrix (which we again debote by S) with integral entries
and determinant + 1, and we have

Sei(/l‘t) — ei().'St) — ei(S/l't) leZ".

If S had an eigenvalue which is a root of unity say, of order k, then I — Sk
would be singular and with integral coefficients and hence for some ie Z7,
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A = S*¥A. Thus the assumption that S is ergodic implies that S has no eigenvalue
which is a root of unity. We may clearly consider the matrix S as operating on
R" and we claim that if ¥ = R" is an S-invariant subspace and the eigenvalues
of S|V are all of modulus <1, then ¥V nZ" = 0. This follows from the fact
that if all the eigenvalues of a non-singular matrix with integral entries (here
S Iynzn) have modulus < 1 then they are all roots of unity (and the fact that
each eigenvalue of S [Vnz,. is also an eigenvalue for S ly and S).

We now write R" = V @ V; where V and V; are the S-invariant subspaces
of R™ corresponding to the eigenvalues of S of modulus < 1 and > 1 respectively.
Using, e.g., the Euclidean norm we obtain that for an appropriate constant C

if xeR", x = v(x)+ v4(x)v(x)eV and vy(x)eV;, then

(13 o] <l and [0,00] 5 C]x].
We clearly have

(14) |s"|v]| < Cmn.

Also, for some p > 1 and m> m

as) s [vij<

and in particular if v, € V;, m > m, then

16 sui] 2 oo
Finally, by Lemma 3, which we prove in §3, we have some C; > 0 such that
(17) Joud] 2 2™

for all e Z". Going back to the functions ¢, and ¥ introduced above we notice
first they all are trigonometric polynomials. We shall show now that the only
frequency which is common to some ¢, and some ¢z is A = 0, which, by Par-
seval’s formula, implies (3).

Let beZ" be a frequency which appears in ¥ for some Be%. Then
b =X ¢S"b, where b, is a frequency in the corresponding f im; and hence
H b, H = nlm|’. Now v,(b) = XZv,(S™b,) = Z_8S"(v4(b,)) and assuming
K > m, we have by (13) and (15)

(18) “vl(b) H < Cn % mp™".
m=K

On the other hand let a # 0 be a frequency appearing in ¢, for some Aes/.
Then, as before,
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KZ
a =S¥ (Z S"'_Kam) with | a,| < nm'.
K
We have
K2 ]
v ( by S"'—Kam) = X 5" %ya,)
K

and by (13) and (14)

K2

K2
0 F# “ v ( Z S'”—Kam) ” =_<_ Cn Z (m._K)",nl é CnK2n+21+2
K K
hence by (17)
K2
”U1 ( z S""Kam) “ > C K~ 2ntn+i+1)
K

and by (16)

K2

(19) ]|vl(a) ” = ”SKvl ( % S"'_Kam) ” > C,pKK 2014 D)

It is clear that for K > K, (18) and {19) are inconsistent, and the proof is com-
plete.

2. The argument in the proof of Theorem 1 can be refined somewhat to enable
us to deal with epimorphisms of 7”. If S is a non-singular n xn matrix with
integral entries, S defines an epimorphism of 7" i.e., a (usually many to one)
homomorhism of T* onto itself. S is then measure preserving in the sense that
for all measurable E on T" we have u(S-!(E)) = u(E), (the pre-image of every
point under S is a set of ]detSI points, and du(St) = ]detSldy(t)) and it is
known [5] that under such conditions, (7", S) admits a ‘‘natural extension”
(analogous to the extension of the *‘one sided shift’” to the ‘‘twosided shift’’).
Our Theorem 2 implies that this ‘‘natural extension’ of (7", S) is Bernoull.

THEOREM 2. Let S be an ergodic epimorphism of T", let P be a “‘nice”
partition of T" and let ¢ > 0. Then there exists an integer K, such that for every
K > K, and arbitrary N >0, the partitions \/& S™™%? and K IKINg T

are e-independent.

Proor. We follow the lines of the proof of Theorem 1; the only additional
information that we need is the following:

LemMMA 2. Let S be as above. Let | be an integer. There exists a constant
K, such that if K> K,, N arbitrary, and f,, are trigonometric polynomials
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on T" of degree (in each variable) bounded by K* for m < K? and by m' for
m = K2, then the only frequency common to [[X° S™™f, and T[&51E*N s™™f,,
is zero (where (S™™f)(t) = f(S™)).

ProOOF. S (more precisely its adjoint) is a 1-1 endomorphism of Z* which
can be extended as before to an automorphism of R". We decompose
RR=V_ @V, ®V, @ @V, such that V;, j = —1,0,---,r are S invariant,
all the eigenvalues of S \V_l have modulus less than one, all the eigenvalues of
S[Vo have modulus one, and for j = 1,---,r, all the eigenvalues of S'Vj have
the same modulus p;, where po = 1 <p, <-- <p,. We denote by p_; the
maximum modulus of the eigenvalues of S’V_l. This decomposition is given
by the ‘“‘Jordan canonical form”’ theorem, which also shows that if ve V; and
m > 0 is an integer, then

(20) const m™"p} ”UH = ” S™ H < const m"p7 HUH

For any AeZ" we write A = X.,v,(4) where v;(1)eV;. We also notice that
the assumption of ergodicity implies (V_, @ V) nZ" = 0.

Let A be a frequency which appears (with non-zero coefficient) in n’fz N
Then A = XX, S™. where
3y [ A | < constK?

for all m. We clearly have

(22 OB 2 S"(0 )

which, by (20) and (21) implies for j = 0

(23) lv,(2) | < const K_Ezl m"pTK? < const K"+ 2+2pK
while

(24) lv_ (D] < constK>*?*2,

On the other hand, if A’ is a frequency which appears in [[&iX*¥s™™f,
then A’ = SKV5" where " = Z N_ S™A . x2+x. We have

25) [o-s@a)]

N
< const X m"™ (m+ K? + K)' < constK?
m=0

and if 1’ is also a frequency of Hfz S™f,, then by (23) and (20)
(26) lo (A0 | < constK?p; X" ¥K>"*2* 2% = constK'p; .
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It follows that H v_ (A"} + ve(A") H is bounded by a power of K while
” XivA") ” decreases exponentially with K; by Lemma 3 this implies A" = 0
hence A’ = 0. This completes the proof of Lemma 2 and of Theorem 2.

3.

DEFINITION. A subspace V of R" is an eigenspace of an n x n matrix S if

R* = V@ V' with V and V; both invariant under S and S
mon eigenvalue.

Vs S]V1 have no com-

Itis clear that if V is an eigenspace of S with V] as above and if £ is the minimal
polynomial of S ‘V , then 2(S) is invertible on V.

LemMma 3. Let S be an n x n matrix with integral coefficients and let V
be an m-dimensional eigenspace of S. Assume V NZ" = 0. Then there exists
a constant C such that for every AeZ", d(A,V) = C”A””’", where d(A, V) is
the (Euclidean) distance of A to V.

PrOOF. Let #(x) = x*+ a,_;x* ' 4+ -+ + ao (k £ m) be the minimal poly-
nomial of S IV; notice that the coefficients a; are real numbers. There exists some
n>0 such that if F(x)=x*+ by x* 14 o + by with ij — ajl <y
j =0---k—1 then the null space of F(S) is contained in V. This follows from
the fact that, if # is small, 2(S)F(S) is very close to (#(S))* which is invertible
on V;, and its nullity is therefore bounded by m and hence its null space, which
clearly contains that of F(S), is exactly V. Thus, if 5 is sufficiently small,
F(S)A %0 for AeZ", A #0.

By Dirichlet’s theorem, for every positive integer Q, there exist integers
Vo 5T h—1> 4 = QF, such that |aj - rj/ql <1/qQforj=0,---,k—1. Denote
Po(x) = x*+ XE q ryx, then for Q> Qg Py(S)A# 0 for AeZ", 2 #0,
P o(S)A “ > 1/g for any such 2.
For A0, AeZ" let v be its projection on V and write

Py (S)A = Py(S) (A=) + (Po(S) — Z(S)
hence, if C>( X5 "|a;|+ 0S|

and, since g2,(S) has integral coefficients,

A
< |29 = C(d(/l, V) + “q—Q“)

[S~WWIN

and choosing Q = 2C H AI[ we get

1 1 -
dLV) > 500 2 2—CQ;>01”,1“ ,

and the proof is complete.
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